A Decremental Algorithm for Maintaining Frequent Itemsets in Dynamic Databases

نویسندگان

  • Shichao Zhang
  • Xindong Wu
  • Jilian Zhang
  • Chengqi Zhang
چکیده

Data mining and machine learning must confront the problem of pattern maintenance because data updating is a fundamental operation in data management. Most existing data-mining algorithms assume that the database is static, and a database update requires rediscovering all the patterns by scanning the entire old and new data. While there are many efficient mining techniques for data additions to databases, in this paper, we propose a decremental algorithm for pattern discovery when data is being deleted from databases. We conduct extensive experiments for evaluating this approach, and illustrate that the proposed algorithm can well model and capture useful interactions within data when the data is decreasing.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SA-IFIM: Incrementally Mining Frequent Itemsets in Update Distorted Databases

The issue of maintaining privacy in frequent itemset mining has attracted considerable attentions. In most of those works, only distorted data are available which may bring a lot of issues in the datamining process. Especially, in the dynamic update distorted database environment, it is nontrivial to mine frequent itemsets incrementally due to the high counting overhead to recompute support cou...

متن کامل

Data sanitization in association rule mining based on impact factor

Data sanitization is a process that is used to promote the sharing of transactional databases among organizations and businesses, it alleviates concerns for individuals and organizations regarding the disclosure of sensitive patterns. It transforms the source database into a released database so that counterparts cannot discover the sensitive patterns and so data confidentiality is preserved ag...

متن کامل

Efficient Data Mining for Frequent Itemsets in Dynamic and Distributed Databases

Data Mining is one of the central activities associated with understanding and exploiting the world of digital data. It is the mechanized process of modeling large databases by means of discovering useful patterns. A frequent itemset is a pattern describing a relevant subset of the data, and a collection of frequent itemsets is particularly useful because it is an extremely compact model of the...

متن کامل

Post-mining: maintenance of association rules by weighting

This paper proposes a new strategy for maintaining association rules in dynamic databases. This method uses weighting technique to highlight new data. Our approach is novel in that recently added transactions are given higher weights. In particular, we look at how frequent itemsets can be maintained incrementally. We propose a competitive model to ‘promote’ infrequent itemsets to frequent items...

متن کامل

Mining Frequent Itemsets Over Arbitrary Time Intervals in Data Streams

Mining frequent itemsets over a stream of transactions presents di cult new challenges over traditional mining in static transaction databases. Stream transactions can only be looked at once and streams have a much richer frequent itemset structure due to their inherent temporal nature. We examine a novel data structure, an FP-stream, for maintaining information about itemset frequency historie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005